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We-study domain decomposition techniques for the solution of partial differential equations
on a domain divided into several subdomains. These techniques have special applications in the Ja

solution of elliptic problems on irregular domains and parallel computation. A unifying feature of 'r
these techniques is the use of preconditioned conjugate gradient method in solving for the unknowns
on the interfaces of the subdomains, or in some cases, on the whole domain. Since each iteration
involves solving problems on each subdomain, it is essential to keep the number of iterations low.
For this reason, much effort has been devoted recently to the construction of good preconditioners
for the conjugate gradient methods.' In'his paper we surveythe most common preconditioners
that have appeared in the literature, including a new class that we have developed recently. One
of our objectives is to illuminate the relationships among these preconditioners.
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1. Introduction
We consider the problem of solving an elliptic partial differential equation on a domain 11 that

is broken up into subregions f~j. By using domain decomposition or qubstructuring techniques, the
problem reduces to separately solving approximate problems in the subdomains and updating the
solution at the interfaces between two or more subregions. There are several reasons why these
techniques might be attractive:

1. Special solution techniques. like fast direct solvers, might exist to solve the problems on the
subdomains that cannot be applied efficiently to the entire domain. This is often the case, for
example, when the subdomains Qi have very regular geometry, but 11 does not.

2. The equations in the different subdomains might have different parameters or even be of dif-
ferent nature, in which case the idea of substructuring comes very naturally.

3. The idea is attractive for parallel processing. since the problem can be decoupled into in-
dependent subproblems and the communication needed is limited to the boundaries of the
subdomains.
For the class of domain decomposition methods considered in this paper, the basic idea consist

of the following: the domain is discretized and partitioned into several subregions, then. by ap-
plying block elimination to the discretized equations. a system is derived for the unknowns on the
interfaces between subregions. This system is sometimes called the capacitance system. Forming
the right hand side for the interface system and solving it requires the solution of independent
elliptic problems on the subdomains. For certain constant coefficient problems, fast direct methods
can be applied to the solution of the interface system. Such is not the case, however, for more
general operators on irregular domains. For efficiency reasons the system must then be solved by
iterative methods, such as the preconditioned conjugate gradient method (PCG). Once the solution
is known on the interfaces, one more elliptic problem must be solved on each subdomain with the
computed values as boundary conditions. The method is particularly suited to problems for which
the subproblems can be solved efficiently. for example. when the operator has separable coefficients
and the domain is a union of rectangles. On the other hand, when the subdomain problems cannot
be solved efficiently but they can be approximated by simpler operators. it is possible to derive
block preconditioners for tile original system based on preconditioners for the capacitance matrix.

In section 2. we illustrate the method for the case of a domain that is the union of two
rectangles. In section 3. we consider the Poisson and Hehmholtz equations on a rectangular domain
divided into parallel strips and derive the capacitance system for the interface variables. For these
simple and regular cases, the capacitance system cali be solved by fast direct methods. Such is not
the case for irregular domains. In section 4. we summarize the various preconditioners that were
proposed in the literature for use with the CG method. For the case of variable coefficient problems.
when fast direct methods are not applicable to tile olition of the problems on the sibdomains.
the svstem for the whole domain must be solved bv iterative methods. Using the results of the
previous section. preconditioner, for tile large sy-tem can he derived from precon(litioners for tile
capacitance matrix. We ,liscu- this case in section 5. Finally. in section 6. we propose a new family
of row-suim preserving banded preconditioiers for the capacitance iatrix. These preconditioners

have the advantage that they can he applied to a more general class of problems, since as opposed 5
to most of the other preconditioner'. they do not depend on special properties of the differential Q
operator.

2. Domain Decomposition ,tz.

We will firtr con' ler the probleni:
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Figure 1: The domain Q and its partition.

with boundary conditions
U = i ol df2

where L is a linear elliptic operator and the domain n? is as illustrated in Fig. 1 . We will call the
interface between II and fl2, r.

If we order the unknowns for the internal points of the subdomains first and then those in the
interface r, then the discrete solution vector u = (4. 112. 1 3 ) satisfies the linear system

Au = b (2.2)

that can be expressed in block form as:

411 .A13 U

-422 -423 = (b2 (2.3)
13 23 -3.3)( ) ( )

The system (2.3) can be solved by Block-Ga iian Elimination as follows:

Step 1: Compute T _1 T, -I
', - .431 A -11. 2A A3, (2.4)

" = .- "- 1 (2.5)

u'2 .4yb 2  (2.6)

and solve
c - AT , - . )A .2 (2.7)

Step 2: Compute
tti = "'l* - A. 1  (2.3

and

S= ,,2 - .4, .4 , (2.9)

o.-



12,Note that. except for (2.7), the algorithm only requires the solution of problems~ with All and
A2,which corresponds to solving independent problems oin the snb1domiains. This technique of

reducing the problem on n to the solution of decoupled problems on the subdoniailns and a smaller
system for the interface is usually called domain decomposition or substructuring. The matrix C

-' (2.4) is the Schur complement of .4:33 in A and it is sometimes called the capacitance matrix in this
context.

3. Poisson and Helmholtz Equations on a rectangle

We now consider the case w~here L is the Laplacian operator and Q is a rectangle divided into
two or more strips like is shown in Fig. 2. For this case, the exact eigenvectors and eigenvalues of
C are known [2, 6, 71.

r1

r2n2 12

~k1 1k+l

01

Figure 2: Rectangular domain divided into -trips.

For the case of two strips. C hias the following eigeiivalue decom posit ion:CA2
~.A 2  VT .(3.1)

where IT' is the matrix whiose colunhins are

2 (sin j .li sh in 2 ,- b . i nl ti . 1 T (3 .2 )

-A:j2 + -~ VT :(3.3)
3



for j = 1 ... n , where

*~a j4 sin2(T (3.4)

*2

1 + oj + 4.2 (3.5)
*2 + 4

h is the grid size, and m and 1112 are the number of rows of grid points in the y-direction in Q1 and
f22 respectively. By using the decomposition (3.1), the capacitance system (2.7) can be solved by
fast Fourier transforms. Once the solution 113 on the interface is computed, we can compute ul and
U2 by (2.8) and (2.9), which correspond to solving two independent problems on the subdomains
with boundary condition U3 oi1 F.

In the multistrip case, the matrix C has the block-tridiagonal structure:

C B 2

C B2C(3.6)
Bk

Bk Ck

all blocks Ci and Bi have the same matrix of eigenvectors 11, i.e. for i = 1 . k. we have

1IVTCi1n Ai diag(Ail .... Ai,) (3.7)

and for i =2. k. we have

jVTBiW =D = diag(S.... bill) (3.8)

where

+ " + (3.9)

and

-" (' I,,>-) •(3.10)

The capacitance system call then be solved by fa.t Fourier tran~forns and the solution of n decou-
pled tridiagonal systems of dimension k. where k + I i, the number of subdomains [7.

Although it first appears that the algorithm reqnire tilt, olntioll of two problems oil each
suzbdomain, one for computing rhe right hand side and one for computing the solution on each

,ubdomain. some computations can be saved. We refer the interested reader to 1S[. where a (letailed
operation count is derived for the -sequential and parallel implementations.

Formulas (3.6) to (3.10) can be generalized to two particular operators other than the Lapla-
clan: the linear elliptic operator

u1 . +- 3uyy .(3.11)

where the coefficient .3 take, con.tant values .3i on each sublomain i , ind the Helmholtz operator

(3.12)

4
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* The capacitance matrix for the operator (3.11) has the same form as (3.6). The eigenvalues of G1

and Ba are given by

+ + j (3.13)

and

~k

* ~ where

li + ; +3i +30J) (3.14)

*The operator (3.11) can be used as a preconditioner for more general variable coefficient problems.
The Helmholtz operator (3.12) has important applications in the solution of time dependent

problems. The capacitance matrix for this operator also has the form (3.6). where the eigenvalues
of Ci and B are

Aij ' "Vi~~l rn,+i+i (.5
- + 1 V 1

and '3'/ '( 1- 'i  4

~= ~*(3.16)

where
p2 =~-+ nh2  (3.17)

* and

( +; ) , (3.18)

Sh4. Poisson Equation on Irregular Domains

In general. when Q r has irregular shape like in Fia. 1. the eigenvalues and eigenectors of the
capacitance matrix are not r known. The compeation of the capacitance matrix is expensive, since
it requires the solution of in + I systems wvith .41, and .4 22. and it is also expensive to invert for mn
large. because it is dense.

Instead of solving the systei (2.7) directly. preconditioned conjugate gradient methods (PCG)
*can be applied, where onaly miatrix vector products Cy for arbitrary y E R.". are required. This

product can be computed by solving one Poisson problem Onl each subdoniain wvith boundlary
condition on r given by y.%

Since each iteration involves the soluition of problenis onl the nbhdonainms, keeping the number
of iterations small is very important for the efficiency of the iiethod. This ran be achievedl by

choosing' a g"ood preconditioner for . ,evera of hic are gienil th ltrur.~ 10 13. 'j, W
wienmarize th-ee here:

1. In q. Dryja propose,

5
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as a preconditioner for (2.4). where K is the one-dinlensioiial Laplacian. He proved that the
condition number of the preconditioned system, K(AIfLiC) is bounded independently of the
mesh size h. Since AID has the following factorization

AID = I Idiag (~A . ?1)l~ (4.1)

* where the columns of W1 are given by (3.2) and

AD A=-2,13, (4.2)

with ori given by (3.4), AID can be inverted by FFT's.
2. Golub and Mayers [131 propose a preconditioner given by

MIG = K/-I2 + 4K

which has thle following decomposition:

=f, IV&igA,7. \)V 1. (4.3)

w~here

AG -2 a _ (4.4)

Empirical results in [131 show that Mr; performs better than MID.

3. Another interesting preconditioner was given by Bj6rstad and Widlund [31 and has the following
form:

M1B = Am3 - 2A.41A13Ai

It is easy to show that the eigenvalue decomposition of M1B is

*AIB = Wdiag (A\B. 4,. ... AB)1V,, (4.5)

where

for j L.n. When Q, and Q2 are identical. MB is anl exact preconditioner. To implement
Thle method. Bj6rstad and \Vidlund s~olve a ixedl Nenniann-Dirichlet problem in one of the
subd~omains and a Dirichlet problem in the other one. Their method has the advantage that
it can be applied(, to more general operator, and domiain Ii pes. but in the particular case of
the Laplacian operator oin a uinion of rectangles. it is le,-. efficient than applying a sinigle EFT
computation onl the interface grid points. as the factorization (4.5) sugests.

4. Although MD. (;and .1Ip were derived independently of the factorization (3.1). they can be
viewed as progressivelN be!Ter approxiination; to the capacitance matrix C '. The factorization
(3. 1) is exact for the case of a rectanlgular P~. while MID and~ .11( are not. It call be easily observed

*that (4.2) is a fir.,t ordler approximation to (3.3). w hile (4.4) is a second order a pproximiation1.
On the other hand. _11 ik exact onily for the, case of a ret tanigilar domain dividled into twvo

'Anderson [11 gives an interpret arion of tlhe various di'-,t 1.r. recon Iiiotier, s a pproximtli ons to a rontiou' ,peratornn
the interface



31"M1

C,

identical subregions. All this sugests that (3.1) might be a better preconditoner for the case of
an irregular domain [6].. We will call this preconditioner Mc.

In Fig. 3 we compare the preconditioners MD, IG and MC for the Poisson equation on a
T-shaped region f2 as given in Fig. 1, where we vary the aspect ratio of the subdomain fll. We
consider a uniform grid on fl with 15 grid points on the interface r. By varying ml, the number
of interior grid points in the y direction on the subdomain f2j, we computed the condition number
of the preconditioned capacitance system for different aspect ratios m,+1. As we can see, Vc
performs very well, even when fl, becomes very narrow, while the others deteriorate. All Mc, Mg
and Mw are indistinguishable for aspect ratios larger than one and they are all better than AID. In
[6], Chan analyzes and compares these preconditioners on rectangular regions. By his analysis, we
can see that M is always better than MD on a rectangle and both preconditoners perform poorly
when the aspect ratio for the dimension of the rectangles is small. See [141 for a careful numerical
comparison of these and other preconditioners for constant and variable coefficients operators.

1.8

-.6 0

". a

1.0

, , , I iI I , i i I i ,
0.0 0.5 1.0 1.5 2.0.'

o9p.oo . ote

Figure 3: T-shaped region. Condition number of the pre-
conditioned capacitance matrix with Chan's (C), Dryja's(D),
Bjorstad and Widluud's (W) and Golub and Mayers' (G) pre-
conditoners.
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5. Variable Coefficient Problems
In the case of non-constant coefficient problems, there usually are no fast solvers available for

All an. A 2 2 and therefore the solutions to systems with these matrices are to be avoided. In that

case, a Krvlov subspace method can be applied to solve the system (2.3) on the whole domain
instead of just the capacitance system on the interface. Therefore, we must now be concerned with
the problem of finding preconditioners for (2.3) that make use of the regularity of the subdomains.
We wil! show that preconditioners for (2.3) can be derived from preconditioners for the capacitance
matrix. Assume that the variable coefficient operator can be approximated by operators with
constant coefficients on each subdomain. In particular, let Blu and B 22 be approximations to .41,
and A 22 , corresponding to the discretization of linear elliptic operators with constant coefficients
on fl and f02 respectively. Based on the following decomposition of the matrix .4 in (2.3):

.4 A22 I A 4.23 , (5.1)
A31 A32 C I

where C is the Schur complement (2.4), we call derive a preconditoner for .4 given by:

B-11 1I 3

" B = B 22  I B224 23  , (5.2)

431 4:32  31 •.,

where Af is a good preconditioner for the matrix C. We can see that 31 is easily invertible by
block-elimination, since fast solvers can be applied to solve systems with B1 1 and B22 .

Preconditioners of the form (5.2) were first used by Bramble, Pasciak and Schatz's [4, 5). In
[41, Dryjas preconditioner is used as the matrix .11 in (5.2). The second preconditioner in [51
corresponds to chosing the matrix .11 given by Bj6rstad and Widlund [3]. As a generalization of
their idea, any of the preconditioners given for the constant coefficients case can be applied here as
Al. In fact. a theorem by Eisenstat in [14] shows that, when Bi, = Ai, the PCG algorithm applied
to (2.7) with preconditioner 31 and initial guess it' is equivalent to the PCG algorithm applied to
(2.3) with preconditioner given by (5.2) and initial guess (A 1' (bi - A 13u).A.l(b2  0 .4 0) u).
In [141. numerical experiments were performed with these and other preconditioners.

6. A new class of banded, row-sum preserving preconditioners

We now present a new family of preconditioners for the capacitance matrix C. These pre-
conditioners are motivated by the empirical observation that the elements of the matrix C decay
away from the main diagonal. It is. therefore, reasonable to consider k-diagonal approximations
to C. It would not. however. he efficient to compute the elements of C in order to do this. We
now present a method for computing a k-diagonal approxiation to C without requiring the con-
putation of C explicitly. The idea is motivated by sparse Jacobian evaluation techniques (91. For
example. for the case k = 3. the approximant .1 to C caii be computed in compact form by eval-

uating the three products Cti. i = 1,2.3, where u3 = (1.0.0. 1.0... .)T, I, = (0. 1. 0.0. 1 .... )T and
= (0.0. 1.0.0 .... )T. The motivation is clear, for if C were indeed tridiagonal. (k = 3). then all of

it- nonzero elements can he found in the three vectors Ct,. I = 1.2.3. Note that the computation of
each product Cit, involves solving one problem oi each *ibdolnain with iii as boundary condition
on the interface.

The generalization to other values of k is olviouiS. Moreover, it call be easily verified that the
matrix 3! computel this way prezerve- the row-,iinii of ('. The ca.se k = 1. however. lteserves
*pecial mention. The method .le-cribed ahove would comipute a ,la zoial ap~proximation to . with

I
7,



I.°diagonal entries given by Ce. where e (1 1. I)T. However, since the firstterm A43 in the

definition of C in (2.4) is already known explicitly (and it is tridiagonal), it is only necessary to
apply the above approximation procedure to the last two terms in (2.4). The resulting matrix Af is
thus tridiagonal, namely. A.33 with the diagonal entries modified in such a way that the row sums
of C are preserved. Viewed this way, the case k = 1 is similar in spirit to the Dupont-Kendall-
Rachford procedure [II] for obtaining an easily invertible banded approximant for C. This special
procedure for the case k = 1 was sugested independently by Eisenstat [12]. See [14] for numerical
experiments with this class of preconditioners.

In general, for a k-diagonal approximation to C. k problems on each subdomain must be

solved, which may seem prohibitively expensive except for small values of k. However, the main
advantage of this family of preconditioners is that they are less dependent on special properties
(e.g. eigeustructures) of the differential operator underlying A. Moreover. for nonlinear problems
where a Newton type outer iteration may be involved, one preconditioner can be reused several
times and the cost of computing it can be amortized over the overall iteration. Further details will
be reported elsewhere.

9



References

[1 C. R. Anderson, On Domain Decomposition.. Technical Report Nanu.liipt CLaSSiC-85-09,
Center for Large Scale Scientific Computation . Stanford University, October 1985.

[2] R. Bank and D. Rose. Marching Algorithms for Elliptic Boundary Value Problems. I: The
Constant Coefficient Case. SIAM J. Numer. Anal., 14/5 (1977), pp. 792-828.

[3] P. E. Bjorstad and 0. B. Widlund. Iterative Methods for the Solution of Elliptic Problems on
Regions Partitioned into Substructures. Technical Report 136. Courant Institute of
Mathematical Sciences. NYU, September 1984.

[4] J. H. Bramble. The Construction of Preconditioners for Elliptic Problems by Substructuring.
manuscript, 1984.

[51 J.H. Bramble. J.E. Pa-sciak and A.H. Schatz, Preconditioners for Interface Problems on Mesh
Domains. manuscript.

[6] T.F. Chan. Analysis of Preconditioners for Domain Decomposition. Technical Report YALEU/
DCS/ RR-408. Yale Computer Science Department, 1985.

[71 T.F. Chan and D.C. Resasco. A Domain-Decomposed Fast Poisson Solver on a Rectangle..
Technical Report YALEU/DCS/RR-409, Yale Computer Science Department. 1985.

[8] T.F. Chan. D.C. Resasco and F. Sajed, Implementation of Domain Decomposed Fast Poisson
Solvers on Multiprocessors, Technical Report YALE/DCS/RR-456. Yale Computer
Science Department, 1985.

[9] A.R. Curtis, N.J.D. Powell and J.K. Reid. On the Estimation of Sparse Jacobian Matrices. J.

Inst. Maths. Applics., 13 (1974). pp. 117-119.

[10] M. Dryja. A Capacitance Matrix Method for Dirichlet Problem on Polygonal Region. Nniier.
.Math.. 39(1982). pp. 51-64.

[11] T.Dupont. R.P. Kendall and H.H. Rachford. An Approximate Factorization Procedure for
Solving Self-Adjoint Elliptic Difference Equations. SIAM Journal on Numerical
Analysis. 6 (1968). pp. 753-782.

[12] S. Eisenstat. personal communication. 1985.

113, G. H. Golub and D. Nlayers, The Use of Pre-Conditioning over Irregular Regions. 1983.
Lecture at Sixth Int. Conf. on Computing ,Methods in Applied Sciences and
Engineering, Versailles, Dec. 1983.

[14] D. Keyes and W. Gropp, A Comparison of Domain Decomposition Techniques for Elliptic Par-
tial Differential Equations. Technical Report YALEU/DCS/R R-44S. Yale Computer
Science Department, 1985.

. .-,.-.,.. ? -, .. ..- .- -.., .. ., .. -. ._ . -,. . - . .-.. .-. .-,.-..... -- v .. - .. .. -... ,. . -. 7 -- .. - .. , .- - .



A

K.

'S..

I,

9. .~.. 4

~~JL


